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Abstract 

We further discuss the field theory which we introduced in a previous paper. We find 
that it is possible for a component of the field to have a minimum at an arbitrary origin 
point as a consequence of the field equations. 

Considerable effort has gone into the search for elementary particles 
from an experimental approach. This effort has been rewarded by the 
discovery of an ever increasing number of  particles. I t  remains clear 
that still higher energies will be needed before we gain an understanding 
of the structure of an electron which is treated, in present studies, as a point. 

In atomic physics, spectroscopy has given us information concerning 
energy levels. Scattering experiments have also yielded important informa- 
tion. However, the shape of the electron distribution in the hydrogen atom 
in the various quantum states is most easily understood from a theoretical 
development--Schr/Sdinger's equation. One would suspect that there 
should exist a partial differential equation from which we can describe the 
properties of  elementary particles. In contrast to the experimental program, 
little effort has gone into the corresponding theoretical approach. 

As a first Step in this direction, we may seek a nonlinear field equation 
for which a field component  has a maximum (minimum) at some point. 
Rosen (1966) has obtained a static solution to a nonlinear equation having 
the form 

Z 
0 = (Z4g -}- r2)1/2 (1) 

where Z and g are parameters. Born-Infeld (1934) found a solution of the 
type 

q 1 
Er (2) 

ro 2 a/[1 + (r/ro) 4] 
with q, r 0 as parameters. Anderson & Derrick (1970) have also studied 
particle-like behavior using a different set of  nonlinear partial differential 
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equations. These are some examples of the work being done. All these 
particle-like solutions are seen to have an overly simple type structure. At 
this stage, the problem of existence of particle-like behavior in nonlinear 
equations, we see, is a mathematical one, as there are no compelling 
physical arguments for the equations considered by these authors. Never- 
theless, we feel that mathematical models of particles would be, as we said 
previously, a first step. 

In previous papers (Muraskin, 1970a, b; Muraskin & Clark, 1970; 
Muraskin & Ring, 1971), we have introduced a field theory based on the 
Lorentz invariant equations 

 -r'Jk m i , ,  
- -  - r krj, - = 0 ( 3 )  

~gik 
0x ~ T'~gmk -- T'~'~g~,, = 0 (4) 

In contrast to the equations of these other authors, the equations (3) and 
(4) can be motivated from simple ideas (Muraskin, 1970a). We have already 
obtained the following properties of these equations (Muraskin, 1970a, b; 
Muraskin & Clark, 1970; Muraskin & Ring, 1971): 

(a) Nontrivial solutions to the equations exist locally. 
(b) Equation (3) is related to the second derivative wave equation in 

an asymptotic sense. 
(c) Dirac plane waves give an exact solution to the field equations. 

[This feature is not shared by all e~ plane waves. Here, we have 
Fjk = e~( Oe~ fl Oxk) ]. 

(d) An extremum in g (the determinant of g,k) can be made to appear 
at an arbitrary origin. 

(e) The field equations are capable of exhibiting a badly broken, yet 
well defined, reflection symmetry (as well as more complicated 
symmetries) about the point where g is an extremum. 

( f )  Many of the components o f / ' j k  can have extremum behavior 
about the point where g is an extremum. 

(g) For a choice of parameters at the origin point, we find that the 
simple equation 

. .  0 2 

[Zg-= g'J ~x~ g~Ox i = 0  

is contained in the field theory. 

In this paper, we show that g00 can be made a minimum at an arbitrary 
origin point. 

In our previous work, we introduced r'}k and e~ at the origin point such 
that 

T'jk = e~, iet3~ e~'k F~,  (5) 

Ox ~ 
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/~' is chosen so that the integrability conditions . /37 

+ rLr  - rLr  =o s_ yp .L /3,~ ~ py  

are satisfied. 
From the field equations (4), we get 

agoo 
Oxt~ = 2_lN~)k got 

(6) 

(7) 

For g00 to be an extremum, we have 

-rL got = o (8) 

where a = 1, 2, 3. From (7) and the field equations for Fj,, and from (8) 
we get (b = 1, 2, 3) 

2 
Ab.  --  Oz goo _ U F~ot 1~o + got/'~'/'d~m + g.,t/'~. F~} (9) 

OXb Oxa -- [got 

We note Ab, = A,b follows from (6). Taking the point P as the origin point. 
we have 

goo(Q)=goo(P)+OgOodxa 1 a2g00 OXbOxa + . . .  
OX a ~- 2 0X a 0.u ~ 

(10) 

Using (7) and (8), we get that goo(Q) is a maximum or minimum if 
�89 b always has the same sign for any point Q in the neighborhood 
of P. Thus, it follows that Abadxadx b must be positive or negative definite. 
Therefore, the conditions for a minimum are (Hildebrand, 1952) (go0 in 
our case will be negative) 

A l l  "q'- A22 + 133 > 0 ( l la )  

A I 1 A 2 2 - ( A I z ) Z  + A z z A 3 3 - ( A 1 3 ) Z  + A 3 3 A I 1 - ( A 1 3 ) 2  > 0  (llb) 

All Alz A13 > 0  
/~21 A22 A23 ( l lc)  
A31 A32 A33 

In our previous work (Muraskin, 1970a, Muraskin & Clark, 1970; 
Muraskin & Ring, 1971), we used a particular choice o f / ~ .  A deficiency 
of  this choice is as follows. We have, at the origin point, 2Fit, = / ~ t ,  Further- 
more, it can be seen that this condition is maintained at all points by the 
field equations. Thus, we shall seek a less restrictive set of /~ 'y .  We shall 
exhibit such a choice for F~y that satisfies (6) and for whicla (11) is also 
satisfied. 

We shall t a k e / ~ ,  to be zero if any of the indices take on the value zero, 
except for the case of  F~ which is taken to be nonZero. We take-~ all 

t No summation over repeated indices. 
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F~ a = A;  all/~gc = B where a, b, c are all different; all Fife = C for  c r  a;  
all/-'#a = D for  b ~ a; all/~#b = E f o r  a # b. Then (6) goes into the following;" 

C D -  A D -  C z + A C  + D z + B D -  E z -  E B  = O  

B D  --  2 B C  + A B  + C D  - B E  = 0 

2 E D  - 2 E C  - D 2 + E A  + A D  - B 2 = 0 

E C  + 2 B D  - E D  - A B  - E 2 = 0 (12) 

A solution to the equations is given by 

E = I  

D = B = arbitrary 

A = 2 B + 2  

C = 3B + 1 (13) 

The other solutions to these equations have been less useful for us~ We 
have chosen 

B = D = - 0 . 7  

C = -1 .1  

A = 0 . 6  

E = I  

/ ' ~  0 = 16.0 (14) 
and 

ell = 0.8 e21 = 0.9 e31 = 1.0 e~ = 10.2 

e12 = -0 .3  e22 = - 0 . 4  e32 = - -0 " 15  e~ = 0 . 0 8  

e l3  = -0"2 e23 = -0-25  e33 = -0"35 e~ = 0"09 

elo = 1-6882 e2o = 2"0570 e3o = 1.8844 e~ = 2.0 (15) 

e'o, e2o, e3o were obtained f rom (8), (15) and 

g ~  = e~i e~ jg~[j (16) 

with g ~  = ( + 1 , - 1 , - 1 , - 1 ) .  elo, e2o, e3o were obtained to 13 decimal places, 
but  they are rounded off in (15). We then obtain 

A11 + A22 -t- A33 = 0'64503 • 105 

All Az2 - -  (AI2) 2 ~- AzzA33 -- (A23)  2 ~- All A33 - -  ( A I 3 )  z = 0-14234 • 107 

det Aab = 0.19799 x 106 
(17) 

This implies that  goo is a min imum at the origin point. 
Thus,  we conclude that  the field equations are capable o f  describing a 

min imum for  a field component .  A maximum (minimum) in g rather than 
g00 has, at present, not  been found. 

Wi th  the help o f  a computer ,  we have mapped  the solution in the 
ne ighborhood of  the origin. In  contrast  to our  previous papers, we find 



PARTICLE-LIKE OBJECTS IN A NONLINEAR FIELD THEORY 53 

no obvious symmetries in this case, nor  did we find any line-up of  com- 
ponents. This points out the diversity o f  effects which the field equations 
are capable of  describing. 

We have not  yet established whether these particle-like objects are 
bounded.  We also do not  know whether these field equations are consistent 
with many maxima and minima at different points in space. 
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